These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences.
    Author: Fouts DE.
    Journal: Nucleic Acids Res; 2006; 34(20):5839-51. PubMed ID: 17062630.
    Abstract:
    Phage_Finder, a heuristic computer program, was created to identify prophage regions in completed bacterial genomes. Using a test dataset of 42 bacterial genomes whose prophages have been manually identified, Phage_Finder found 91% of the regions, resulting in 7% false positive and 9% false negative prophages. A search of 302 complete bacterial genomes predicted 403 putative prophage regions, accounting for 2.7% of the total bacterial DNA. Analysis of the 285 putative attachment sites revealed tRNAs are targets for integration slightly more frequently (33%) than intergenic (31%) or intragenic (28%) regions, while tmRNAs were targeted in 8% of the regions. The most popular tRNA targets were Arg, Leu, Ser and Thr. Mapping of the insertion point on a consensus tRNA molecule revealed novel insertion points on the 5' side of the D loop, the 3' side of the anticodon loop and the anticodon. A novel method of constructing phylogenetic trees of phages and prophages was developed based on the mean of the BLAST score ratio (BSR) of the phage/prophage proteomes. This method verified many known bacteriophage groups, making this a useful tool for predicting the relationships of prophages from bacterial genomes.
    [Abstract] [Full Text] [Related] [New Search]