These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of beta-adrenoceptor blockade on the myocardial accumulation of fatty acid tracer and its intracellular metabolism in the heart after ischemia-reperfusion injury. Author: Igarashi N, Nozawa T, Fujii N, Suzuki T, Matsuki A, Nakadate T, Igawa A, Inoue H. Journal: Circ J; 2006 Nov; 70(11):1509-14. PubMed ID: 17062979. Abstract: BACKGROUND: Increases in sympathetic nerve activity during ischemia may increase intracellular fatty acid (FA) accumulation via enhanced FA uptake and inhibition of beta-oxidation. Therefore, the beneficial effects of beta-adrenoceptor blockade on myocardial ischemic injury might result from the suppression of FA accumulation. METHODS AND RESULTS: Carvedilol (1 mg/kg) or propranolol (1 mg/kg) was injected 10 min before 15-min occlusion of coronary artery in rats. Myocardial FA accumulation and intracellular metabolites of FA tracer were determined 3 days after reperfusion using (125)I-and (131)I-9-metylpentadecanoic acid (9MPA). Carvedilol significantly decreased 9MPA accumulation in both the ischemic region (IR) and non-IR, as compared with vehicle, and increased its clearance. However, the non-metabolized 9MPA fraction was not different between carvedilol- and vehicle-treated rats. Consequently, the amount of non-metabolized 9MPA in the myocardium was lower in rats treated with carvedilol than in those given vehicle. These effects of carvedilol were not different from those of propranolol. CONCLUSION: Beta-adrenoceptor blockade did not affect a visual assessment of the autoradiographic image of 9MPA in hearts subjected to ischemia-reperfusion, but it accelerated the clearance of 9MPA in both the IR and non-IR. The administration of beta-blockade before ischemia could accelerate the recovery from ischemia-reperfusion injury by inhibiting myocardial FA accumulation before beta-oxidation.[Abstract] [Full Text] [Related] [New Search]