These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Temperature-controlled growth of ZnO nanowires and nanoplates in the temperature range 250-300 degrees C. Author: Xu C, Kim D, Chun J, Rho K, Chon B, Hong S, Joo T. Journal: J Phys Chem B; 2006 Nov 02; 110(43):21741-6. PubMed ID: 17064134. Abstract: Starting from a mixture of Zn and BiI3, we grew nanowires and nanoplates on an oxidized Si substrate at relatively low temperatures of 250 and 300 degrees C, respectively. The ZnO nanowires had diameters of approximately 40 nm and grew along the [110] direction rather than the conventional [0001] direction. The nanoplates had thicknesses of approximately 40 nm and lateral dimensions of 3-4 microm. The growth of both the nanowires and nanoplates is dominated by the synergy of vapor-liquid-solid (VLS) and direction conducting. Analysis of photoluminescence spectra suggested that the nanoplates contain more oxygen vacancies and have higher surface-to-volume ratios than the nanowires. The present results clearly demonstrate that the shapes of ZnO nanostructures formed by using BiI3 can be controlled by varying the temperature in the range 250-300 degrees C.[Abstract] [Full Text] [Related] [New Search]