These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Defective metabolism of oxidized phospholipid by HDL from people with type 2 diabetes.
    Author: Mastorikou M, Mackness M, Mackness B.
    Journal: Diabetes; 2006 Nov; 55(11):3099-103. PubMed ID: 17065348.
    Abstract:
    HDL protects against atherosclerosis development. Defective functioning of HDL in type 2 diabetes may be one cause of increased cardiovascular disease associated with type 2 diabetes. HDL modulates LDL oxidation through the action of paraoxonase-1 (PON1), which is one of the major mechanisms by which HDL is antiatherogenic. We have compared the ability of HDL from people with type 2 diabetes (n = 36) with no coronary heart disease (CHD) to metabolize oxidized palmitoyl arachidonyl phosphatidylcholine (ox-PAPC), a major product of LDL oxidation and a PON1 substrate, with that of HDL isolated from healthy control subjects (n = 19) and people with CHD but no diabetes (n = 37). HDL from people with type 2 diabetes metabolized 11% less ox-PAPC, and HDL from people with CHD metabolized 6% less, compared with HDL from control subjects (both P < 0.01). The ability of HDL from control and type 2 diabetic subjects containing the PON1-192RR alloform to metabolize ox-PAPC was significantly reduced compared with PON1-192QQ or QR genotypes (P < 0.05). The defective ability of HDL to metabolize ox-PAPC was reflected in a significant increase in circulating plasma oxidized LDL concentration in the two patient groups (37 +/- 5, 53 +/- 7, and 65 +/- 7 mmol/l for control, CHD, and type 2 diabetic subjects, respectively; P < 0.001), with PON1-192RR genotype carriers having the highest concentrations. In the control group, there was a significant negative correlation between serum PON1 activity and oxidized LDL concentration (r = 0.856, P < 0.001); however, this correlation was not evident in the patient groups. HDL from type 2 diabetic subjects without CHD had a decreased ability to metabolize oxidized phospholipids, which could lead to increased susceptibility to develop cardiovascular disease.
    [Abstract] [Full Text] [Related] [New Search]