These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A nonparametric approach for detection of bursts in spike trains.
    Author: Gourévitch B, Eggermont JJ.
    Journal: J Neurosci Methods; 2007 Mar 15; 160(2):349-58. PubMed ID: 17070926.
    Abstract:
    In spike-train data, bursts are considered as a unit of neural information and are of potential interest in studies of responses to any sensory stimulus. Consequently, burst detection appears to be a critical problem for which the Poisson-surprise (PS) method has been widely used for 20 years. However, this method has faced some recurrent criticism about the underlying assumptions regarding the interspike interval (ISI) distributions. In this paper, we avoid such assumptions by using a nonparametric approach for burst detection based on the ranks of ISI in the entire spike train. Similar to the PS statistic, a "Rank surprise" (RS) statistic is extracted. A new algorithm performing an exhaustive search of bursts in the spike trains is also presented. Compared to the performances of the PS method on realizations of gamma renewal processes and spike trains recorded in cat auditory cortex, we show that the RS method is very robust for any type of ISI distribution and is based on an elementary formalization of the definition of a burst. It presents an alternative to the PS method for non-Poisson spike trains and is simple to implement.
    [Abstract] [Full Text] [Related] [New Search]