These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of target length on the hybridization efficiency and specificity of rRNA-based oligonucleotide microarrays. Author: Liu WT, Guo H, Wu JH. Journal: Appl Environ Microbiol; 2007 Jan; 73(1):73-82. PubMed ID: 17071797. Abstract: The effect of target size on microarray hybridization efficiencies and specificity was investigated using a set of 166 oligonucleotide probes targeting the 16S rRNA gene of Escherichia coli. The targets included unfragmented native rRNA, fragmented rRNA ( approximately 20 to 100 bp), PCR amplicons (93 to 1,480 bp), and three synthetic single-stranded DNA oligonucleotides (45 to 56 bp). Fluorescence intensities of probes hybridized with targets were categorized into classes I (81 to 100% relative to the control probe), II (61 to 80%), III (41 to 60%), IV (21 to 40%), V (6 to 20%), and VI (0 to 5%). Good hybridization efficiency was defined for those probes conferring intensities in classes I to IV; those in classes V and VI were regarded as weak and false-negative signals, respectively. Using unfragmented native rRNA, 13.9% of the probes had fluorescence intensities in classes I to IV, whereas the majority (57.8%) exhibited false-negative signals. Similar trends were observed for the 1,480-bp PCR amplicon (6.6% of the probes were in classes I to IV). In contrast, after hybridization of fragmented rRNA, the percentage of probes in classes I to IV rose to 83.1%. Likewise, when DNA target sizes were reduced from 1,480 bp to 45 bp, this percentage increased approximately 14-fold. Overall, microarray hybridization efficiencies and specificity were improved with fragmented rRNA (20 to 100 bp), short PCR amplicons (<150 bp), and synthetic targets (45 to 56 bp). Such an understanding is important to the application of DNA microarray technology in microbial community studies.[Abstract] [Full Text] [Related] [New Search]