These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Author: Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J, Fearon ER, Weiss SJ. Journal: Nat Cell Biol; 2006 Dec; 8(12):1398-406. PubMed ID: 17072303. Abstract: Accumulating evidence indicates that hyperactive Wnt signalling occurs in association with the development and progression of human breast cancer. As a consequence of engaging the canonical Wnt pathway, a beta-catenin-T-cell factor (TCF) transcriptional complex is generated, which has been postulated to trigger the epithelial-mesenchymal transition (EMT) that characterizes the tissue-invasive phenotype. However, the molecular mechanisms by which the beta-catenin-TCF complex induces EMT-like programmes remain undefined. Here, we demonstrate that canonical Wnt signalling engages tumour cell dedifferentiation and tissue-invasive activity through an Axin2-dependent pathway that stabilizes the Snail1 zinc-transcription factor, a key regulator of normal and neoplastic EMT programmes. Axin2 regulates EMT by acting as a nucleocytoplasmic chaperone for GSK3beta, the dominant kinase responsible for controlling Snail1 protein turnover and activity. As dysregulated Wnt signalling marks a diverse array of cancerous tissue types, the identification of a beta-catenin-TCF-regulated Axin2-GSK3beta-Snail1 axis provides new mechanistic insights into cancer-associated EMT programmes.[Abstract] [Full Text] [Related] [New Search]