These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Rotational diffusion of band 3 in erythrocyte membranes. 1. Comparison of ghosts and intact cells. Author: Matayoshi ED, Jovin TM. Journal: Biochemistry; 1991 Apr 09; 30(14):3527-38. PubMed ID: 1707311. Abstract: The rotational diffusion of eosin-labeled 3 in human erythrocyte cells and hemoglobin-free ghosts at 37 degrees C has been studied in detail by polarized delayed luminescence. The time-resolved anisotropy with both cells and freshly prepared ghosts is similar, decaying with well-resolved rotational correlation times of 0.03, 0.2, and greater than or equal to 1 ms. Mild proteolytic removal of the water-soluble 41-kDa cytoplasmic domain of band 3 in ghosts results in a drastic increase in the fractional contributions of the two fastest depolarizing components. Our results, taken together with other data in the literature, imply that several classes of band 3 that differ greatly in mobility exist in ghosts and intact cells. The mobility of one class is hindered due to complexation with other membrane or cytoplasmic proteins mediated via the 41-kDa cytoplasmic domain. However, another class of band 3 molecules exists as homo-or heterooligomeric complexes larger than a dimer that are stabilized by hydrophobic interactions involving the intramembranal domain. Finally, the presence of the (previously undetected) 0.03-ms anisotropy component strongly suggests that a significant fraction of band 3 in both ghosts and intact cells is highly mobile and diffuses at the rate expected for a freely rotating dimer in the erythrocyte membrane.[Abstract] [Full Text] [Related] [New Search]