These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Up-regulated PAR-2-mediated salivary secretion in mice deficient in muscarinic acetylcholine receptor subtypes. Author: Nishiyama T, Nakamura T, Obara K, Inoue H, Mishima K, Matsumoto N, Matsui M, Manabe T, Mikoshiba K, Saito I. Journal: J Pharmacol Exp Ther; 2007 Feb; 320(2):516-24. PubMed ID: 17077315. Abstract: Protease-activated receptor-2 (PAR-2) is expressed in the salivary glands and is expected to be a new target for the treatment of exocrine dysfunctions, such as dry mouth; however, the salivary secretory mechanism mediated by PAR-2 remains to be elucidated. Therefore, mechanism of the PAR-2-mediated salivary secretion was investigated in this study. We found that a PAR-2 agonist peptide, SLIGRL-OH, induced salivary flow in vivo and dose-dependent increase in [Ca(2+)](i) submandibular gland (SMG) acinar cells in wild-type (WT) mice and mice lacking M(3) or both M(1) and M(3) muscarinic acetylcholine receptors (mAChRs), whereas secretions in PAR-2 knockout (PAR-2KO) mice were completely abolished. The saliva composition secreted by SLIGRL-OH was similar to that secreted by mAChR stimulation. Ca(2+) imaging in WT acinar cells and beta-galactosidase staining in PAR-2KO mice, in which the beta-galactosidase gene (LacZ) was incorporated into the disrupted gene, revealed a nonubiquitous, sporadic distribution of PAR-2 in the SMG. Furthermore, compared with the secretion in WT mice, PAR-2-mediated salivary secretion and Ca(2+) response were enhanced in mice lacking M(3) or both M(1) and M(3) mAChRs, in which mAChR-stimulated secretion and Ca(2+) response in acinar cells were severely impaired. Although the mechanism underlying the enhanced PAR-2-mediated salivary secretion in M(3)-deficient mice is not clear, the result suggests the presence of some compensatory mechanism involving PAR-2 in the salivary glands deficient in cholinergic activation. These results indicate that PAR-2 present in the salivary glands mediates Ca(2+)-dependent fluid secretion, demonstrating potential usefulness of PAR-2 as a target for dry mouth treatment.[Abstract] [Full Text] [Related] [New Search]