These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Upregulation of CCAAT/enhancer binding protein beta in activated astrocytes and microglia.
    Author: Ejarque-Ortiz A, Medina MG, Tusell JM, Pérez-González AP, Serratosa J, Saura J.
    Journal: Glia; 2007 Jan 15; 55(2):178-88. PubMed ID: 17078024.
    Abstract:
    The transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) regulates the expression of key genes in inflammation but little is known about the involvement of C/EBPbeta in glial activation. In this report, we have studied the patterns of astroglial and microglial C/EBPbeta expression in primary mouse cortical cultures. We show that both astrocytes and microglia express C/EBPbeta in untreated mixed glial cultures. C/EBPbeta is upregulated when glial activation is induced by lipopolysaccharide (LPS). The LPS-induced upregulation of glial C/EBPbeta is rapid (2 h at mRNA level, 4 h at protein level). It is elicited by low concentrations of LPS (almost maximal effect at 1 ng/mL) and it is reversed by the protein synthesis inhibitor cycloheximide. C/EBPbeta nuclear levels increase both in astrocytes and microglia after LPS treatment, and the response is more marked in microglia. The LPS-induced increase in microglial C/EBPbeta is prevented by coadministration of the MAP kinase inhibitors SB203580 (p38 inhibitor) + SP600125 (JNK inhibitor) or SB203580 + U0126 (ERK inhibitor). Systemic injection of LPS also increases brain nuclear levels of C/EBPbeta as shown by Western blot, and this increase is localized in microglial cells as shown by double immunofluorescence, in the first report to our knowledge of C/EBPbeta expression in activated glial cells in vivo. These findings support a role for C/EBPbeta in the activation of astrocytes and, particularly, microglia. Given the nature of the C/EBPbeta-regulated genes, we hypothesize that this factor participates in neurotoxic effects associated with glial activation. (c) 2006 Wiley-Liss, Inc.
    [Abstract] [Full Text] [Related] [New Search]