These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrafast relaxation dynamics of the excited states of Michler's thione. Author: Mondal JA, Ghosh HN, Mukherjee T, Palit DK. Journal: J Phys Chem A; 2006 Nov 09; 110(44):12103-12. PubMed ID: 17078604. Abstract: Ultrafast relaxation dynamics of the S2 and S1 states of 4,4'-bis(N,N-dimethylamino)thiobenzophenone (Michler's thione, MT) have been investigated in different kinds of solvents, using steady-state absorption and emission as well as femtosecond transient absorption and fluorescence up-conversion spectroscopic techniques. Steady-state fluorescence measurements, following photoexcitation to the S2 state of MT, reveal weak fluorescence from the S2 state (phi F approximately 10(-3) in nonpolar and 10(-4) in polar solvents) but much weaker fluorescence from the S1 state. Yield of fluorescence from the S2 state is reduced in polar solvents because of reduced energy gap between the S2 and S1 states, Delta E(S2-S1), as well as interaction with the solvent molecules. Occurrence of S2-fluorescence in polar solvents, despite small energy gap, suggests that symmetry allowed S2(1A1) --> S0 (1A1) radiative and symmetry forbidden S2(1A1) --> S1 (1A2) nonradiative transitions are the factors responsible for the S2 fluorescence in MT. Lifetime of the S2 state is shorter (varying in the range 0.28-3.5 ps in different solvents) than that predicted from the Delta E(S2-S1) value and this can be attributed to its flexible molecular structure, which promotes an efficient intramolecular radiationless deactivation pathways. The lifetime of the S1 state (approximately 1.9-6.5 ps) is also very short because of small energy difference between the S1 and T1 states (Delta E(S1-T1) approximately 300 cm(-1)) in cyclohexane and hydrogen-bonding interaction as well as the presence of the isoenergetic T1(pipi*) state to enhance the rate of the intersystem crossing process from the S1(npi*) state in protic solvents.[Abstract] [Full Text] [Related] [New Search]