These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Receptor-mediated DNA-targeted photoimmunotherapy.
    Author: Karagiannis TC, Lobachevsky PN, Leung BK, White JM, Martin RF.
    Journal: Cancer Res; 2006 Nov 01; 66(21):10548-52. PubMed ID: 17079478.
    Abstract:
    We show the efficacy of a therapeutic strategy that combines the potency of a DNA-binding photosensitizer, UV(A)Sens, with the tumor-targeting potential of receptor-mediated endocytosis. The photosensitizer is an iodinated bibenzimidazole, which, when bound in the minor groove of DNA and excited by UV(A) irradiation, induces cytotoxic lesions attributed to a radical species resulting from photodehalogenation. Although reminiscent of photochemotherapy using psoralens and UV(A) irradiation, an established treatment modality in dermatology particularly for the treatment of psoriasis and cutaneous T-cell lymphoma, a critical difference is the extreme photopotency of the iodinated bibenzimidazole, approximately 1,000-fold that of psoralens. This feature prompted consideration of combination with the specificity of receptor-mediated targeting. Using two in vitro model systems, we show the UV(A) cytotoxicity of iodo ligand/protein conjugates, implying binding of the conjugate to cell receptors, internalization, and degradation of the conjugate-receptor complex, with release and translocation of the ligand to nuclear DNA. For ligand-transferrin conjugates, phototoxicity was inhibited by coincubation with excess native transferrin. Receptor-mediated UV(A)-induced cytotoxicity was also shown with the iodo ligand conjugate of an anti-human epidermal growth factor receptor monoclonal antibody, exemplifying the potential application of the strategy to other cancer-specific targets to thus improve the specificity of phototherapy of superficial lesions and for extracorporeal treatments.
    [Abstract] [Full Text] [Related] [New Search]