These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Monocytes infected with Mycobacterium tuberculosis regulate MAP kinase-dependent astrocyte MMP-9 secretion.
    Author: Harris JE, Green JA, Elkington PT, Friedland JS.
    Journal: J Leukoc Biol; 2007 Feb; 81(2):548-56. PubMed ID: 17079649.
    Abstract:
    Tuberculosis (TB) of the CNS (CNS-TB) carries a high mortality. Disease pathology is characterized by widespread destruction of CNS tissues. Matrix metalloproteinase-9 (MMP-9) is able to catabolyze specific components of the CNS tissue matrix and blood-brain barrier. Increased cerebrospinal fluid MMP-9 concentrations are associated with tissue damage, leukocyte infiltration, and death in CNS-TB. Using zymography, Western analysis, and transcription factor assays, we investigated mechanisms regulating MMP-9 activity in CNS-TB. We demonstrate that conditioned media from monocytes infected with Mycobacterium tuberculosis (CoMTB) induce MMP-9 secretion from astrocytes (U373-MG). IL-1beta and TNF-alpha are necessary but not sufficient for such induction of astrocyte MMP-9 secretion. CoMTB up-regulates AP-1 DNA-binding activity, and the c-Jun, FosB, and JunB subunits are particularly increased. MMP-9 secretion from CoMTB-stimulated astrocytes is dependent on the activity of p38, Erk, and Jnk MAPKs. Phosphorylation of p38, Erk, and Jnk is activated rapidly, peaking 30 min poststimulation with CoMTB. Inhibition of IL-1beta but not TNF-alpha in CoMTB decreases p38, Erk, and Jnk activity in astrocytes. Consistently, IL-1beta signals through the MAPK cascade at physiological levels, whereas TNF-alpha, IL-6, IL-10, CCL-2, CCL-5, and CXCL-8 (all present in CoMTB) do not. In summary, the data suggest that monocyte-dependent cytokine networks may play a key role in the development of a matrix-degrading environment during CNS-TB.
    [Abstract] [Full Text] [Related] [New Search]