These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 17beta-estradiol protects cortical neurons against oxidative stress-induced cell death through reduction in the activity of mitogen-activated protein kinase and in the accumulation of intracellular calcium. Author: Numakawa Y, Matsumoto T, Yokomaku D, Taguchi T, Niki E, Hatanaka H, Kunugi H, Numakawa T. Journal: Endocrinology; 2007 Feb; 148(2):627-37. PubMed ID: 17082253. Abstract: Although many studies have suggested that estrogen acts as a neuroprotective agent in oxidative stress, the underlying mechanism has not been fully elucidated. In the present study, we examined the effect of 17beta-estradiol (17beta-E2) on H(2)O(2)-induced death signaling in cultured cortical neurons. Exposure of the cortical neurons to H(2)O(2) triggered a series of events, including overactivation of p44/42 MAPK and intracellular Ca(2+) accumulation via voltage-gated Ca(2+) channels and ionotropic glutamate receptors, resulting in apoptotic-like cell death. The MAPK pathway might work as death signaling in our system, because the MAPK pathway inhibitor, U0126, blocked H(2)O(2)-induced MAPK activation, Ca(2+) overload, and cell death. Interestingly, a similar inhibitory effect on H(2)O(2)-triggered MAPK activation, Ca(2+) accumulation, and cell death was observed in cultures incubated with 17beta-E2 for 24 h before exposure to H(2)O(2), suggesting that the protective effect of 17beta-E2 is induced via attenuating overactivation of the MAPK pathway. Furthermore, we found that ionotropic glutamate receptor subunits, including NR2A and GluR2/3, but not NR2B and GluR1, were down-regulated in the 17beta-E2-treated cultures. The down-regulation of these glutamate receptor subunits was also observed after chronic treatment with U0126. Therefore, it is possible that 17beta-E2 down-regulates the expression of the ionotropic glutamate receptors by reducing activity of the MAPK pathway, which might be important for the protective effect of 17beta-E2 against oxidative stress-induced toxicity.[Abstract] [Full Text] [Related] [New Search]