These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A Markov model for interspike interval distributions of auditory cortical neurons that do not show periodic firings.
    Author: Britvina T, Eggermont JJ.
    Journal: Biol Cybern; 2007 Feb; 96(2):245-64. PubMed ID: 17082952.
    Abstract:
    Spontaneous firing properties of individual auditory cortical neurons are interpreted in terms of local and global order present in functioning brain networks, such as alternating "up" and "down" states. A four-state modulated Markov process is used to model neuronal firings. The system alternates between a bound and an unbound state, both with Poisson-distributed lifetimes. During the unbound state, active and closed states alternate with Poisson-distributed lifetimes. Inside the active state, spikes are generated as a realization of a Poisson process. This combination of processes constitutes a four-state modulated Markov process, determined by five independent parameters. Analytical expressions for the probability density functions (pdfs) that describe the interspike interval (ISI) distribution and autocorrelation function are derived. The pdf for the ISI distribution is shown to be a linear combination of three exponential functions and is expressed through the five system parameters. Through fitting experimental ISI histograms by the theoretical ones, numerical values of the system parameters are obtained for the individual neurons. Both Monte Carlo simulations and goodness-of-fit tests are used to validate the fitting procedure. The values of the estimated system parameters related to the active-closed and bound-unbound processes and their independence on the neurons' mean firing rate suggest that the underlying quasi-periodic processes reflect properties of the network in which the neurons are embedded. The characteristic times of autocorrelations, determined by the bound-unbound and active-closed processes, are also independent of the neuron's firing rate. The agreement between experimental and theoretical ISI histograms and autocorrelation functions allows interpretation of the system parameters of the individual neurons in terms of slow and delta waves, and high-frequency oscillations observed in cortical networks. This procedure can identify and track the influence of changing brain states on the single-unit firing patterns in experimental animals.
    [Abstract] [Full Text] [Related] [New Search]