These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Author: de Graaf BH, Rudd JJ, Wheeler MJ, Perry RM, Bell EM, Osman K, Franklin FC, Franklin-Tong VE. Journal: Nature; 2006 Nov 23; 444(7118):490-3. PubMed ID: 17086195. Abstract: In higher plants, sexual reproduction involves interactions between pollen and pistil. A key mechanism to prevent inbreeding is self-incompatibility through rejection of incompatible ('self') pollen. In Papaver rhoeas, S proteins encoded by the stigma interact with incompatible pollen, triggering a Ca2+-dependent signalling network resulting in pollen tube inhibition and programmed cell death. The cytosolic phosphoprotein p26.1, which has been identified in incompatible pollen, shows rapid, self-incompatibility-induced Ca2+-dependent hyperphosphorylation in vivo. Here we show that p26.1 comprises two proteins, Pr-p26.1a and Pr-p26.1b, which are soluble inorganic pyrophosphatases (sPPases). These proteins have classic Mg2+-dependent sPPase activity, which is inhibited by Ca2+, and unexpectedly can be phosphorylated in vitro. We show that phosphorylation inhibits sPPase activity, establishing a previously unknown mechanism for regulating eukaryotic sPPases. Reduced sPPase activity is predicted to result in the inhibition of many biosynthetic pathways, suggesting that there may be additional mechanisms of self-incompatibility-mediated pollen tube inhibition. We provide evidence that sPPases are required for growth and that self-incompatibility results in an increase in inorganic pyrophosphate, implying a functional role for Pr-p26.1.[Abstract] [Full Text] [Related] [New Search]