These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Author: Liu GQ, Wang XL. Journal: Appl Microbiol Biotechnol; 2007 Feb; 74(1):78-83. PubMed ID: 17086412. Abstract: Response surface methodology (RSM) was applied to optimize the critical medium ingredients of Agaricus blazei. A three-level Box-Behnken factorial design was employed to determine the maximum biomass and extracellular polysaccharide (EPS) yields at optimum levels for glucose, yeast extract (YE), and peptone. A mathematical model was then developed to show the effect of each medium composition and its interactions on the production of mycelial biomass and EPS. The model predicted the maximum biomass yield of 10.86 g/l that appeared at glucose, YE, peptone of 26.3, 6.84, and 6.62 g/l, respectively, while a maximum EPS yield of 348.4 mg/l appeared at glucose, YE, peptone of 28.4, 4.96, 5.60 g/l, respectively. These predicted values were also verified by validation experiments. The excellent correlation between predicted and measured values of each model justifies the validity of both the response models. The results of bioreactor fermentation also show that the optimized culture medium enhanced both biomass (13.91 +/- 0.71 g/l) and EPS (363 +/- 4.1 mg/l) production by Agaricus blazei in a large-scale fermentation process.[Abstract] [Full Text] [Related] [New Search]