These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adenovirus-mediated interferon-beta gene transfer inhibits angiogenesis in and progression of orthotopic tumors of human prostate cancer cells in nude mice. Author: Lee J, Wang A, Hu Q, Lu S, Dong Z. Journal: Int J Oncol; 2006 Dec; 29(6):1405-12. PubMed ID: 17088978. Abstract: Interferon (IFN)-beta is a multifunctional cytokine. Our previous studies revealed that intratumoral transfer of the murine interferon (IFN)-beta gene inhibited the growth of human and mouse prostate cancer cells in mice. Since IFN-beta activity is species-restricted, we investigated the efficacy and mechanisms of forced expression of human IFN-beta in suppressing the growth of human prostate cancer cells in mice. Orthotopic tumors of PC-3MM2 human prostate cancer cells were forced to express human IFN-beta by intratumoral injection of an adenoviral vector (AdhIFN-beta). Tumor growth and survival of tumor-bearing mice were determined. Cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Angiogenesis and angiogenic molecule expression were evaluated by IHC and quantitative real-time reverse-transcriptional PCR (qRT-PCR). We found that forced expression of human IFN-beta inhibited tumor growth in a dose-dependent manner. An injection of 2 x 10(9) PFU (plaque-forming units) of AdhIFN-beta retarded tumor growth by 90% and prolonged the survival of tumor-bearing mice. Control tumors contained more proliferating cells (PCNA(+)) and fewer apoptotic cells (TUNEL(+)) than did AdhIFN-beta treated-tumors. Treatment with AdhIFN-beta downregulated the expression of interleukin-8 and vascular endothelial cell growth factor-A. Taken together, our data indicated that forced expression of human IFN-beta in human prostate cancer cells significantly inhibited their prostatic growth, which correlated with downregulation of angiogenic molecules and suggested that adenoviral vector-mediated IFN-beta gene therapy could be an effective approach for the management of human prostate cancer.[Abstract] [Full Text] [Related] [New Search]