These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of luteinizing-hormone exocytosis by guanosine 5'-[gamma-thio]triphosphate reveals involvement of a GTP-binding protein distal to second-messenger generation.
    Author: van der Merwe PA, Millar RP, Wakefield IK, Davidson JS.
    Journal: Biochem J; 1991 Apr 15; 275 ( Pt 2)(Pt 2):399-405. PubMed ID: 1709005.
    Abstract:
    Dual inhibitory and stimulatory actions of guanine nucleotides on luteinizing-hormone (LH) exocytosis were observed in primary sheep gonadotropes permeabilized with staphylococcal alpha-toxin. At resting cytosolic [Ca2+]free (pCa 7), 5'-[gamma-thio]triphosphate (GTP[S]) and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) stimulated rapid LH exocytosis, which was maximal between 5 and 10 min. GTP[S] and p[NH]ppG had similar potencies (50% of maximum effect at 20-50 microM), but the effect of p[NH]ppG was more prolonged. Experiments carried out in the presence of saturating concentrations of phorbol 12-myristate 13-acetate (PMA), or in PMA-desensitized cells, suggested that stimulation by p[NH]ppG is mediated by a mechanism additional to protein kinase C (PKC) activation. Furthermore, p[NH]ppG stimulated LH exocytosis in the presence of saturating cyclic AMP (cAMP) concentrations, although its effect was less than additive. However, when both PMA and cAMP were present, p[NH]ppG did not stimulate a further increase in the rate of LH exocytosis. In contrast, pretreatment of cells with GTP[S] at low [Ca2+]free markedly inhibited subsequent responses to Ca2+, cAMP, PMA, and cAMP plus PMA. This inhibitory effect required lower GTP[S] concentrations than the stimulatory effect (50% inhibition at 1-10 microM), and was not observed with p[NH]ppG. A similar inhibition was observed with adenosine 5'-[gamma-thio]triphosphate, probably by its conversion into GTP[S]. These results suggest that the stimulatory actions of guanine nucleotides can be accounted for by the combined activation of PKC and generation of cAMP, resulting from activation of conventional signal-transducing GTP-binding proteins. The inhibitory effect of GTP[S] can be clearly distinguished and indicates the involvement of a distinct GTP-binding protein in exocytosis at a site distal to second-messenger generation.
    [Abstract] [Full Text] [Related] [New Search]