These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Moving toward a more physiological model: application of mucin to refine the in vitro digestion/Caco-2 cell culture system. Author: Jin F, Welch R, Glahn R. Journal: J Agric Food Chem; 2006 Nov 15; 54(23):8962-7. PubMed ID: 17090148. Abstract: The objective of this study was to determine if a combination of commercially available mucin and an 8 microm microporous membrane insert can be used to replace the 15 kDa molecular weight cutoff (MWCO) dialysis membrane used in an established in vitro digestion/Caco-2 cell culture system. Although the current model with the 15 kDa membrane correlates well with human studies, use of mucin may improve the system as the mucus layer is suspected to play a physiological role in Fe absorption. Use of mucin may also enable more complete assessment of iron bioavailability from large molecular weight forms of Fe such as heme and ferritin Fe. A range of foods or Fe (i.e., FeCl(3) +/- ascorbic acid, cooked beef, red bean, white bean, soybean, horse spleen ferritin and plant-type ferritin) were subjected to in vitro digestion. In the presence of mucin, significantly more Fe was taken up from the heme Fe (86%) and ferritin (91%) samples and significantly less Fe was taken up from the white bean samples ( approximately 70%) relative to the 15 kDa membrane. The results indicated that the forms of iron interact with mucin. The mucus layer has a significant effect on Fe uptake. Further refinement and characterization of the mucin method is needed before it can be deemed to be a suitable replacement for the dialysis membrane.[Abstract] [Full Text] [Related] [New Search]