These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oligomycin interaction with Na,K-ATPase: oligomycin binding and dissociation are slow processes. Author: Esmann M. Journal: Biochim Biophys Acta; 1991 Apr 26; 1064(1):31-6. PubMed ID: 1709053. Abstract: Oligomycin interacts with the Na,K-ATPase by increasing the apparent Na+ affinity in the non-phosphorylated state of the enzyme. This property is used to estimate rate constants attributed to oligomycin binding and dissociation reactions with Na,K-ATPase. The rate constants are determined indirectly, employing stop-flow fluorimetry of eosin, the fluorescence of which is a marker for the E1 state of the enzyme, i.e. for Na+ binding. The second-order rate constants derived for oligomycin binding are in the range (6-12).10(4) M-1 s-1 at 6 degrees C for both shark rectal gland and pig kidney enzyme. Rate constants for dissociation of the enzyme-oligomycin complex are about 0.05 s-1 at 6 degrees C. The slow rates of binding and dissociation suggest that oligomycin acts from within the membrane lipid phase rather than from the aqueous phase. The dissociation constant at 6 degrees C for the enzyme-oligomycin complex can be calculated to be about 1 microM for shark enzyme and about 2 microM for kidney enzyme, at pH 7.0 in 2 mM NaCl.[Abstract] [Full Text] [Related] [New Search]