These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MEK1/2 inhibition attenuates vascular ETA and ETB receptor alterations after cerebral ischaemia.
    Author: Henriksson M, Stenman E, Vikman P, Edvinsson L.
    Journal: Exp Brain Res; 2007 Apr; 178(4):470-6. PubMed ID: 17091294.
    Abstract:
    Cerebral ischaemia is associated with elevated levels of endothelin B (ETB) receptors in the ipsilateral middle cerebral artery (MCA). This up-regulation of ET receptors occurs via de novo transcription involving mitogen-activated protein kinases (MAPK). The aim of this study was to examine the effect of inhibition of the MAP kinase/ERK kinase (MEK)1/2 on ET receptor alteration, brain damage, and neurology in experimental cerebral ischaemia. Transient middle cerebral artery occlusion (MCAO) was induced in male Wistar rats by the intraluminal filament technique. The animals received 100 mg/kg intraperitoneally of the MEK1/2 inhibitor U0126 or vehicle in conjunction with the occlusion. After 24 h, the rats were decapitated and the brains removed. The middle cerebral arteries were dissected out and examined with myographs or immunohistochemistry. The ischaemic areas of the brains were compared. After the MCAO, the contractile responses of the ETA and ETB receptors were augmented in the ipsilateral MCA. U0126 decreased this alteration in ET receptor response. Furthermore, treatment with U0126 significantly decreased the brain damage and improved neurological scores. Immunohistochemistry showed that there were lower protein levels of phosphorylated extracellular signal-regulated kinases (ERK)1/2 and phosphorylated transcription factor Elk-1 in the U0126-treated rats compared to control. The results show that treatment with the MEK1/2 inhibitor U0126 in ischaemic stroke decreases brain damage, neurological symptoms, and ET receptor alteration. The vascular effects of U0126 provide new perspective on possible mechanisms of actions of MAPK inhibition in cerebral ischaemia.
    [Abstract] [Full Text] [Related] [New Search]