These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanistic study on adsorptive removal of tert-butanethiol on Ag-Y zeolite under ambient conditions.
    Author: Shimizu K, Kobayashi N, Satsuma A, Kojima T, Satokawa S.
    Journal: J Phys Chem B; 2006 Nov 16; 110(45):22570-6. PubMed ID: 17092003.
    Abstract:
    The dynamics and surface chemistry of tert-butanethiol (TBT) adsorptive removal over silver-exchanged Y zeolite (Ag-Y) were studied under ambient conditions. Saturation uptake on Ag-Y was higher than that on H-Y and Na-Y. The structural analyses by a combination of X-ray diffraction, Ag K-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structures (EXAFS), Ag L(III)-edge XANES, S K-edge XANES, and in situ UV-vis show that the AgSH molecule, Ag(2)S monomer, and Ag(4)S(2) cluster are the dominant silver species in TBT-saturated Ag-Y. Dynamic changes in adsorbed intermediates, gas-phase products, and the silver sulfides were followed by in situ FTIR, mass spectroscopy and in situ UV-vis, respectively. The results show the following reaction mechanism: (1) formation of iso-butene and adsorbed H(2)S on the Ag(+) site via C-S cleavage of hydrogen-bonded TBT initially adsorbed on the Ag(+) site; (2) conversion of the adsorbed H(2)S to AgSH and H(+) on zeolite; (3) the reaction of two Ag-SH species to yield Ag(2)S and H(+) on zeolite.
    [Abstract] [Full Text] [Related] [New Search]