These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of baseline metabolic rate on pulmonary O2 uptake on-kinetics during heavy-intensity exercise in humans. Author: Wilkerson DP, Jones AM. Journal: Respir Physiol Neurobiol; 2007 May 14; 156(2):203-11. PubMed ID: 17092783. Abstract: We hypothesised that initiating heavy-intensity exercise from an elevated baseline metabolic rate would result in slower Phase II O2 uptake V(O2) kinetics and a greater overall 'gain' in V(O2) per unit increase in work rate. Seven healthy males performed a series of like-transitions on a cycle ergometer: (1) from light exercise to 'moderate' exercise (80% of the gas exchange threshold, GET; L-->M); (2) from light exercise to 'heavy' exercise (40% of the difference between GET and V(O2) peak; L-->H); (3) from moderate exercise to heavy exercise (M-->H). The Phase II time constant (tau) was significantly (P<0.01) greater in the M-->H condition (48+/-11 s) compared to the L-->M and L-->H conditions (26+/-6 s versus 27+/-4 s, respectively). Moreover, the end-exercise 'gain' values were significantly different between the three conditions (L-->M, 8.1+/-0.7 mL min-1 W-1; L-->H, 9.7+/-0.4 mL min-1 W-1; M-->H, 10.7+/-0.7 mL min-1 W-1; P<0.05). This 'non-linearity' in the pulmonary V(O2) response to exercise might be attributed, at least in part, to differences in the metabolic properties of the muscle fibres recruited in the abrupt transition from a lower to a higher work rate.[Abstract] [Full Text] [Related] [New Search]