These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neurophysiology of prehension. II. Response diversity in primary somatosensory (S-I) and motor (M-I) cortices.
    Author: Gardner EP, Ro JY, Babu KS, Ghosh S.
    Journal: J Neurophysiol; 2007 Feb; 97(2):1656-70. PubMed ID: 17093113.
    Abstract:
    Prehension responses of 76 neurons in primary somatosensory (S-I) and motor (M-I) cortices were analyzed in three macaques during performance of a grasp and lift task. Digital video recordings of hand kinematics synchronized to neuronal spike trains were compared with responses in posterior parietal areas 5 and AIP/7b (PPC) of the same monkeys during seven task stages: 1) approach, 2) contact, 3) grasp, 4) lift, 5) hold, 6) lower, and 7) relax. S-I and M-I firing patterns signaled particular hand actions, rather than overall task goals. S-I responses were more diverse than those in PPC, occurred later in time, and focused primarily on grasping. Sixty-three percent of S-I neurons fired at peak rates during contact and/or grasping. Lift, hold, and lowering excited fewer S-I cells. Only 8% of S-I cells fired at peak rates before contact, compared with 27% in PPC. M-I responses were also diverse, forming functional groups for hand preshaping, object acquisition, and grip force application. M-I activity began < or =500 ms before contact, coinciding with the earliest activity in PPC. Activation of specific muscle groups in the hand was paralleled by matching patterns of somatosensory feedback from S-I needed for efficient performance. These findings support hypotheses that predictive and planning components of prehension are represented in PPC and premotor cortex, whereas performance and feedback circuits dominate activity in M-I and S-I. Somatosensory feedback from the hand to S-I enables real-time adjustments of grasping by connections to M-I and updates future prehension plans through projections to PPC.
    [Abstract] [Full Text] [Related] [New Search]