These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chloroperoxidase: P-450 type absorption in the absence of sulfhydryl groups.
    Author: Chiang R, Makino R, Spomer WE, Hager LP.
    Journal: Biochemistry; 1975 Sep 23; 14(19):4166-71. PubMed ID: 170955.
    Abstract:
    The oxidation state of the two half-cystine residues in the native ferric form of chloroperoxidase and in the reduced ferrous chloroperoxidase has been examined in order to evaluate the role of sulfhydryl groups as determinants of P-450 type spectra. Mössbauer and optical spectroscopy studies indicate that the ferrous forms of P-450cam and chloroperoxidase have very similar or identical heme environments. Model studies have suggested that sulfhydryl groups may function as axial ligands for developing P-450 character. However, chemical studies involving both sulfhydryl reagents and amperometric titrations show that neither the ferric nor the chemically produced ferrous forms of chloroperoxidase contain a sulfhydryl group. These results rule out the hypothesis that sulfhydryl groups are unique components for P-450 absorption characteristics. The optical and electron paramagnetic resonance (EPR) spectra of the nitric oxide complex of chloroperoxidase have been obtained and compared to those of myoglobin, hemoglobin, and cytochrome c and horseradish peroxidase. The EPR spectrum of the NO-ferrous chloroperoxidase complex, which is similar to that of cytochrome P-450cam, does not show the extra nitrogen hyperfine structure which appears to be characteristic of those hemoproteins which have a nitrogen atom as an axial heme ligand.
    [Abstract] [Full Text] [Related] [New Search]