These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Amphiphilic poly(vinyl alcohol) derivatives as complexing agents for fenretinide. Author: Orienti I, Zuccari G, Bergamante V, Mileo E, Lucarini M, Carosio R, Montaldo PG. Journal: Biomacromolecules; 2006 Nov; 7(11):3157-63. PubMed ID: 17096546. Abstract: Poly(vinyl alcohol) (PVA) substituted with oleyl chains and tetraethyleneglycol monoethyl ether chains (TEGMEE) at 1.5% and 1% degrees of substitution respectively (mol of substituent to mol of hydroxyvinyl monomer) has previously been shown to self-assemble in water, providing aggregates selectively cytotoxic toward tumor cells vs normal cells. These polymers have also been shown to increase the long-term survival of nude mice injected with both human and murine neuroblastoma cell lines. In the present work, we changed the substitution degree of the oleyl chains on the poly(vinyl alcohol) backbone and maintained constant at 1% the degree of TEGMEE substitution. We evaluated the main physicochemical characteristics of the final polymers, their cytotoxicity toward tumor cells, and their complexing ability for hydrophobic molecules. The aim was to investigate the possibility of improving intrinsic antitumor efficacy of the polymer by changing the degree of oleyl chain substitution and further increase activity by complexation with antitumor drugs. The polymers were prepared at oleyl chain substitution degrees ranging from 0.5 to 3% (mol of substituent to mol of hydroxyvinyl monomer). The most active was again the 1.5% substituted polymer. It was further characterized by exhibiting the highest complexing ability toward hydrophobic molecules allowing the formation of a complex with fenretinide (HPR). The polymer-HPR complex was stable in aqueous environment and released the free drug prevalently in the presence of fluid hydrophobic phases. It was cytotoxic toward tumor cells with minimal activity toward normal cells. Antitumor activity exceeded that of the separate complex components resulting from the concomitant effect of the polymer and the HPR solubilized by complexation.[Abstract] [Full Text] [Related] [New Search]