These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CGI: a new approach for prioritizing genes by combining gene expression and protein-protein interaction data.
    Author: Ma X, Lee H, Wang L, Sun F.
    Journal: Bioinformatics; 2007 Jan 15; 23(2):215-21. PubMed ID: 17098772.
    Abstract:
    MOTIVATION: Identifying candidate genes associated with a given phenotype or trait is an important problem in biological and biomedical studies. Prioritizing genes based on the accumulated information from several data sources is of fundamental importance. Several integrative methods have been developed when a set of candidate genes for the phenotype is available. However, how to prioritize genes for phenotypes when no candidates are available is still a challenging problem. RESULTS: We develop a new method for prioritizing genes associated with a phenotype by Combining Gene expression and protein Interaction data (CGI). The method is applied to yeast gene expression data sets in combination with protein interaction data sets of varying reliability. We found that our method outperforms the intuitive prioritizing method of using either gene expression data or protein interaction data only and a recent gene ranking algorithm GeneRank. We then apply our method to prioritize genes for Alzheimer's disease. AVAILABILITY: The code in this paper is available upon request.
    [Abstract] [Full Text] [Related] [New Search]