These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of two T-cell epitopes on the candidate Epstein-Barr virus vaccine glycoprotein gp340 recognized by CD4+ T-cell clones.
    Author: Wallace LE, Wright J, Ulaeto DO, Morgan AJ, Rickinson AB.
    Journal: J Virol; 1991 Jul; 65(7):3821-8. PubMed ID: 1710291.
    Abstract:
    Current efforts to develop an Epstein-Barr virus subunit vaccine are based on the major envelope glycoprotein gp340. Given the central role of CD4+ T cells in regulating immune responses to subunit vaccine antigens, the present study has begun the work of identifying linear epitopes which are recognized by human CD4+ T cells within the 907-amino-acid sequence of gp340. A panel of gp340-specific CD4+ T-cell clones from an Epstein-Barr virus-immune donor were first assayed for their proliferative responses to a series of truncated gp340 molecules expressed from recombinant DNA vectors in rat GH3 cells, by using an autologous B lymphoblastoid cell line as a source of antigen-presenting cells. The first four T-cell clones analyzed all responded to a truncated form of gp340 which contained only the first 260 N-terminal amino acids. These clones were subsequently screened for responses to each of a panel of overlapping synthetic peptides (15-mers) corresponding to the primary amino acid sequence of the first 260 N-terminal amino acids of gp340. One clone (CG2.7) responded specifically to peptides from the region spanning amino acids 61 to 81, while three other clones (CG5.15, CG5.24, and CG5.36) responded specifically to peptides from the region spanning amino acids 163 to 183. Work with individual peptides from these regions allowed finer mapping of the T-cell epitopes and also revealed the highly dose-dependent nature of peptide-induced responses, with inhibitory effects apparent when the most antigenic peptides were present at supraoptimal concentrations. Experiments using homozygous typing B lymphoblastoid cell lines as antigen-presenting cells showed that the T-cell clones with different epitope specificities were restricted through different HLA class II antigens; clone CG2.7 recognized epitope 61-81 in the context of HLA DRw15, whereas clones CG5.15, CG5.24, and CG5.36 recognized epitope 163-183 in the context of HLA DRw11. The present protocol therefore makes a systematic analysis of CD4+ T-cell epitopes within gp340 possible; it will be necessary to screen gp340-specific T-cell clones from a variety of donors to assess the wider influence of HLA class II polymorphism upon epitope choice.
    [Abstract] [Full Text] [Related] [New Search]