These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO(4) nanocrystals.
    Author: Fan W, Song X, Bu Y, Sun S, Zhao X.
    Journal: J Phys Chem B; 2006 Nov 23; 110(46):23247-54. PubMed ID: 17107173.
    Abstract:
    Selective-controlled structure and shape of LaVO(4) nanocrystals were successfully synthesized by a simple hydrothermal method without the presence of catalysts or templates. It was found that tuning the pH of the growth solution was a crucial step for the control of the structure transformation, that is, from monoclinic (m-) to tetragonal (t-) phase, and morphology evolution of LaVO(4) nanocrystals. Further studies demonstrated that the morphology of the product had a strong dependence on the initial lanthanum sources. In the La(NO(3))(3) or LaCl(3) reaction system, pure t-LaVO(4) nanorods with uniform diameters about 10 nm could be obtained. But when using La(2)(SO(4))(3) as the lanthanum source, we can get t-LaVO(4) nanowiskers with broomlike morphology. The detailed systematic study had shown that a special dissolution-recrystallization transformation mechanism as well as an Ostwald ripening process was responsible for the phase control and anisotropic morphology evolution of the LaVO(4) nanocrystals. As a result, the controlled synthesis of m- and t-LaVO(4) not only has great theoretical significance in studying the polymorph control and selective synthesis of inorganic materials but also benefits the potential applications based on LaVO(4) nanocrystals owing to the unusual luminescent properties induced by structural transformation.
    [Abstract] [Full Text] [Related] [New Search]