These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of the beta myosin heavy chain promoter by MEF-2D, MyoD, p300, and the calcineurin/NFATc1 pathway.
    Author: Meissner JD, Umeda PK, Chang KC, Gros G, Scheibe RJ.
    Journal: J Cell Physiol; 2007 Apr; 211(1):138-48. PubMed ID: 17111365.
    Abstract:
    Calcium is a key element in intracellular signaling in skeletal muscle. Changes in intracellular calcium levels are thought to mediate the fast-to-slow transformation of muscle fiber type. One factor implicated in gene regulation in adult muscle is the nuclear factor of activated T-cells (NFAT) isoform c1, whose dephosphorylation by the calcium/calmodulin-dependent phosphatase calcineurin facilitates its nuclear translocation. Here, we report that differentiated C2C12 myotubes predominantly expressing fast-type MyHCII protein undergo fast-to-slow transformation following calcium-ionophore treatment, with several transcription factors and a transcriptional coactivator acting in concert to upregulate the slow myosin heavy chain (MyHC) beta promoter. Transient transfection assays demonstrated that the calcineurin/NFATc1 signaling pathway is essential for MyHCbeta promoter activation during transformation of C2C12 myotubes but is not sufficient for complete fast MyHCIId/x promoter inhibition. Along with NFATc1, myocyte enhancer factor-2D (MEF-2D) and the myogenic transcription factor MyoD transactivated the MyHCbeta promoter in calcium-ionophore-treated myotubes in a calcineurin-dependent manner. To elucidate the mechanism involved in regulating MyHCbeta gene expression, we analyzed the -2.4-kb MyHCbeta promoter construct for cis-regulatory elements. Using electrophoretic mobility shift assays (EMSAs), chromatin immunoprecipitation assays (ChIP), and nuclear complex coimmunoprecipitation (NCcoIP) assays, we demonstrated calcium-ionophore-induced binding of NFATc1 to a NFAT consensus site adjacent to a MyoD-binding E-box. At their respective binding sites, both NFATc1 and MyoD recruited the transcriptional coactivator p300, and in turn, MEF-2D bound to the MyoD complex. The calcium-ionophore-induced effects on the MyHCbeta promoter were shown to be calcineurin-dependent. Together, our findings demonstrate calcium-ionophore-induced activation of the beta MyHC promoter by NFATc1, MyoD, MEF-2D, and p300 in a calcineurin-dependent manner.
    [Abstract] [Full Text] [Related] [New Search]