These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative analysis of complete mitochondrial DNA control region of four species of Strigiformes.
    Author: Xiao B, Ma F, Sun Y, Li QW.
    Journal: Yi Chuan Xue Bao; 2006 Nov; 33(11):965-74. PubMed ID: 17112967.
    Abstract:
    The sequence of the whole mitochondrial (mt) DNA control region (CR) of four species of Strigiformes was obtained. Length of the CR was 3,290 bp, 2,848 bp, 2,444 bp, and 1,771 bp for Asio flammeus, Asio otus, Athene noctua, and Strix aluco, respectively. Interestingly, the length of the control region was maximum in Asio flammeus among all the avian mtDNA control regions sequenced thus far. In addition, the base composition and organization of mtDNA CR of Asio flammeus were identical to those reported for other birds. On the basis of the differential frequencies of base substitutions, the CR may be divided two variable domains, I and III, and a central conserved domain, II. The 3' end of the CR contained many tandem repeats of varying lengths and repeat numbers. In Asio flammeus, the repeated sequences consisted of a 126 bp sequence that was repeated seven times and a 78 bp sequence that was repeated 14 times. In Asio otus, there were also two repeated sequences, namely a 127 bp sequence that was repeated eight times and a 78 bp sequence that was repeated six times. The control region of Athene noctua contained three sets of repeats: a 89 bp sequence that was repeated three times, a 77 bp sequence that was repeated four times, and a 71 bp sequence that was repeated six times. Strix aluco, however, had only one repeated sequence, a 78 bp sequence that was repeated five times. The results of this study seem to indicate that these tandem repeats may have resulted from slipped-strand mispairing during mtDNA replication. Moreover, there are many conserved motifs within the repeated units. These sequences could form stable stem-loop secondary structures, which suggests that these repeated sequences play an important role in regulating transcription and replication of the mitochondrial genome.
    [Abstract] [Full Text] [Related] [New Search]