These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of nitric oxide-guanylate cyclase-dependent and -independent signaling contributes to impairment of beta-adrenergic vasorelaxations by cyclosporine.
    Author: El-Mas MM, Sharabi FM, El-Gowilly SM, El-Din MM.
    Journal: Biochem Pharmacol; 2007 Feb 01; 73(3):359-67. PubMed ID: 17113040.
    Abstract:
    This study investigated the role of endothelium- and smooth muscle-dependent mechanisms in the interaction of cyclosporine (CyA), an immunosuppressant drug, with beta-adrenoceptor (isoprenaline)-mediated relaxations in isolated rat aortas precontracted with phenylephrine. CyA effects were assessed in the absence and presence of NG-nitro-L-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor), methylene blue (guanylate cyclase inhibitor), or propranolol (beta-adrenoceptor antagonist). In aortas with intact endothelium (E+), pretreatment with L-NAME or methylene blue significantly reduced isoprenaline (1 x 10(-9) to 1 x 10(-7)M) relaxations in contrast to no effect for tetraethylammonium (K+ channel blocker), or diclophenac (cyclooxygenase inhibitor), suggesting a major role for the nitric oxide-guanylate cyclase (NO-GC) pathway, but not endothelial hyperpolarizing factor or vasodilator prostanoids, in isoprenaline responses. Isoprenaline relaxations were still evident, though significantly attenuated, in endothelium-denuded aortas (E-) and were resistant to L-NAME or methylene blue. Acute exposure to CyA (2 microM) caused propranolol-sensitive reductions in isoprenaline responses in E+ and E- aortas. The CyA-induced attenuation of isoprenaline responses in E+ aortas largely disappeared in L-NAME-treated aortas and after supplementation with L-arginine, the substrate of nitric oxide. CyA also reduced the endothelium-independent, GC-dependent aortic relaxations evoked by sodium nitroprusside, an effect that was virtually abolished by methylene blue. We conclude that: (i) endothelial and smooth muscle mechanisms contribute to aortic beta-adrenoceptor relaxations and both components are negatively influenced by CyA, and (ii) NO-GC signaling plays an integral role in the vascular CyA-beta-adrenoceptor interaction. The clinical relevance of the present study is warranted given the established role of impaired vascular function in CyA toxicity.
    [Abstract] [Full Text] [Related] [New Search]