These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Author: Bourdin C, Bringoux L, Gauthier GM, Vercher JL.
    Journal: Brain Res Bull; 2006 Dec 11; 71(1-3):101-10. PubMed ID: 17113935.
    Abstract:
    In everyday life, because of unexpected mechanical perturbation applied to the hand or to the whole body, hand movements may become suddenly inaccurate. With prolonged exposure to the perturbation, trajectories slowly recover their normal accuracy, which is the mark of motor adaptation. However, full development of this adaptive process in complete darkness has been recently challenged in a multi-force environment. Here, we report on the effectiveness of static hand position information as specified through vision prior to movement onset on the adaptative changes, over trials, of pointing movements performed in a gravitoinertial force field. For this, subjects seated off-center on a platform rotating at constant velocity, were either confined to complete darkness (No Vision Session, NV) or provided with vision of the hand resting on the starting position prior to movement onset (Hand Vision Prior to Movement Session, HVPM). Overall, our results showed that adaptation to the centrifugal force was very rapid, and allowed subjects to demonstrate appropriate motor control as early as of the very first trials performed during the rotation period, even in the NV condition. They also showed that the integration by the Central Nervous System (CNS) of visual and proprioceptive information prior to the execution of a reaching movement allows subjects to reach full motor adaptation in a multi-force environment. Furthermore, our data confirm the existence of differentiated motor adaptive mechanisms for centrifugal and Coriolis forces. Adaptation to the former may fully develop on the basis of an a priori coding of the characteristics of the background force level even without visual information, while the latter needs visual cues about hand position prior to movement onset to take place.
    [Abstract] [Full Text] [Related] [New Search]