These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I.
    Author: Paladino P, Cummings DT, Noyce RS, Mossman KL.
    Journal: J Immunol; 2006 Dec 01; 177(11):8008-16. PubMed ID: 17114474.
    Abstract:
    The innate immune system responds to pathogen infection by eliciting a nonspecific immune response following the recognition of various pathogen-associated molecular patterns. TLRs and the RNA helicases retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 recognize foreign nucleic acid within endosomal and cytoplasmic compartments, respectively, initiating a signaling cascade that involves the induction of type I IFN through the transcription factors IFN regulatory factor (IRF) 3 and NF-kappaB. However, a recent paradigm has emerged in which bacterial DNA and double-stranded B-form DNA trigger type I IFN production through an uncharacterized TLR- and RIG-I-independent pathway. We have previously described a response in primary fibroblasts wherein the entry of diverse RNA- and DNA-enveloped virus particles is sufficient to induce a subset of IFN-stimulated genes and a complete antiviral response in an IRF3-dependent, IFN-independent manner. In this study, we show that the innate immune response to virus particle entry is independent of both TLR and RIG-I pathways, confirming the existence of novel innate immune mechanisms that result in the activation of IRF3. Furthermore, we propose a model of innate antiviral immunity in which exposure to increasing numbers of virus particles elevates the complexity of the cellular response from an intracellular, IFN-independent response to one involving secretion of cytokines and activation of infiltrating immune cells.
    [Abstract] [Full Text] [Related] [New Search]