These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression.
    Author: Dardente H, Fortier EE, Martineau V, Cermakian N.
    Journal: Biochem J; 2007 Mar 15; 402(3):525-36. PubMed ID: 17115977.
    Abstract:
    CLOCK and BMAL1 [brain and muscle ARNT (arylhydrocarbon receptor nuclear translocator)-like protein 1] are central components of the molecular clock in mammals and belong to the bHLH (basic helix-loop-helix)/PAS [PER (Period)/ARNT/SIM (single-minded)] family. Features of their dimerization have never been investigated. Here, we demonstrate that PAS domain function requires regions extending over the short PAS core repeats. Strikingly, while deleting PAS core repeats does not overtly affect dimerization, it abolishes the transcriptional activity of the heterodimer. Interestingly, these deletions also abolish co-dependent phosphorylation of CLOCK and BMAL1, suggesting a link between the phosphorylation status of the heterodimer and its transactivation potential. We demonstrate that NPAS2 (neuronal PAS domain protein 2) and BMAL2 also undergo similar posttranslational modifications, thereby establishing the mechanism proposed for CLOCK-BMAL1 as a common feature of transcriptional activators in the circadian clock. The discovery of two novel splice variants of BMAL2 confirms the crucial role of the PAS domain and further strengthens the view that co-dependent phosphorylation is of functional significance. In agreement with this, we demonstrate that CRY1-2 (cryptochromes 1-2) affect transactivation and phosphorylation of transcriptional activators of the clock. Furthermore, CRY proteins stabilize the unphosphorylated forms of BMAL1(BMAL2) thereby shifting the phosphorylated/unphosphorylated ratio towards a predominantly unphosphorylated (transcriptionally inactive) form. In contrast, PER proteins, which are weak repressors, are without effect. From these results, we propose a general mechanism for the inhibition of CLOCK(NPAS2)-BMAL1(BMAL2) circadian transcriptional activation by CRY1-2.
    [Abstract] [Full Text] [Related] [New Search]