These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hemodynamic patterns of blunt and penetrating injuries. Author: Lu KJ, Chien LC, Wo CC, Demetriades D, Shoemaker WC. Journal: J Am Coll Surg; 2006 Dec; 203(6):899-907. PubMed ID: 17116559. Abstract: BACKGROUND: The aims of this prospective observational study were to describe early hemodynamic patterns of blunt and penetrating truncal injury and to evaluate outcomes prediction using noninvasive hemodynamic monitoring with a mathematical model tested against actual in-hospital outcomes. The hypothesis was that traumatic shock is a circulatory disorder that can be monitored by noninvasive hemodynamic parameters that reflect cardiac, pulmonary, and tissue perfusion functions. STUDY DESIGN: The cardiac index (CI), heart rate (HR), mean arterial pressure (MAP), pulse oximetry (SapO(2)), transcutaneous oxygen tension indexed to FiO(2) (PtcO(2)/FiO(2)), and carbon dioxide (PtcCO(2)) tensions were monitored beginning shortly after emergency department admission in 657 emergency patients with severe blunt and penetrating chest, abdominal, and extremity trauma. Of these, 113 patients had associated head injury, and these patients also were analyzed separately. A search and display mathematical model, with a decision support program, was based on continuous online, real-time, noninvasive hemodynamic monitoring. RESULTS: There were similar patterns in the blunt and penetrating injuries; the cardiac index, mean arterial pressure, pulse oximetry, transcutaneous oxygen tension indexed to FiO(2), and survival probability values of the survivors were significantly higher (p < 0.01) than the corresponding values of those who died, although heart rate and carbon dioxide tension were higher in the nonsurvivors during the first 24 hours after their emergency department admission. These patterns occurred more rapidly in patients with penetrating injuries. After initial resuscitation in the emergency department, results were correlated with actual outcomes at hospital discharge and found to be 88% correct. CONCLUSIONS: Early noninvasive hemodynamic monitoring with a computerized information system provided a feasible pattern recognition program for outcomes prediction and therapeutic decision support.[Abstract] [Full Text] [Related] [New Search]