These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: QOMA: quasi-optimal multiple alignment of protein sequences.
    Author: Zhang X, Kahveci T.
    Journal: Bioinformatics; 2007 Jan 15; 23(2):162-8. PubMed ID: 17121778.
    Abstract:
    MOTIVATION: We consider the problem of multiple alignment of protein sequences with the goal of achieving a large SP (Sum-of-Pairs) score. RESULTS: We introduce a new graph-based method. We name our method QOMA (Quasi-Optimal Multiple Alignment). QOMA starts with an initial alignment. It represents this alignment using a K-partite graph. It then improves the SP score of the initial alignment through local optimizations within a window that moves greedily on the alignment. QOMA uses two parameters to permit flexibility in time/accuracy trade off: (1) The size of the window for local optimization. (2) The sparsity of the K-partite graph. Unlike traditional progressive methods, QOMA is independent of the order of sequences. The experimental results on BAliBASE benchmarks show that QOMA produces higher SP score than the existing tools including ClustalW, Probcons, Muscle, T-Coffee and DCA. The difference is more significant for distant proteins. AVAILABILITY: The software is available from the authors upon request.
    [Abstract] [Full Text] [Related] [New Search]