These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isolation and characterization of a pyrophosphate-dependent phosphofructokinase from Propionibacterium shermanii.
    Author: O'Brien WE, Bowien S, Wood HG.
    Journal: J Biol Chem; 1975 Nov 25; 250(22):8690-5. PubMed ID: 171261.
    Abstract:
    A pyrophosphate-dependent phosphofructokinase (pyrophosphate; D-fructose-6-phosphate-1-phosphotransferase) has been purified and characterized from extracts of Propionibacterium shermanii. The enzyme catalyzes the transfer of phosphate from pyrophosphate to fructose 6-phosphate to yield fructose-1,6-P2 and phosphate. This unique enzymatic activity was observed initially in Entamoeba histolytica (Reeves, R.E., South, D.J., Blytt, H.G., and Warren, L. G. (1974) J. Biol. Chem. 249, 7734-7741). This is the third pyrophosphate-utilizing enzyme that these two diverse organisms have in common. The others are phosphoenolpyruvate carboxytransphosphorylase and pyruvate phosphate dikinase. The PPi-phosphofructokinase from P. shermanii is specific for fructose-6-P and fructose-1,6-P2, no other phosphorylated sugars were utilized. Phosphate could be replaced by arsenate. The Km values are: phosphate, 6.0 X 10(-4) M; fructose-1, 6-P2, 5.1 X 10(-5) M; pyrophosphate, 6.9 X 10(-5) M; and fructose-6-P, 1.0 X 10(-4) M. The S20w is 5.1 S. The molecular weight of the native enzyme is 95,000. Sodium dodecyl sulfate electrophoresis of the enzyme showed a single band migrating with an Rf corresponding to a molecular weight of 48,000. Extracts of P. shermanii have PPi-phosphofructokinase activity approximately 6 times greater than ATP-phosphofructokinase and 15 to 20 times greater than fructose diphosphatase activities. It is proposed that (a) PPi may replace ATP in the formation of fructose-1-6-P2 when the organism is grown on glucose and (b) when the organism is grown on lactate or glycerol the conversion of fructose-1,6-P2 to fructose-6-P during gluconeogenesis may occur by phosphorolysis rather than hydrolysis.
    [Abstract] [Full Text] [Related] [New Search]