These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimization of microfabricated nanoliter-scale solid-phase extraction device for detection of gel-separated proteins in low abundance by matrix-assisted laser desorption/ionization mass spectrometry. Author: Chen W, Shen J, Yin X, Yu Y. Journal: Rapid Commun Mass Spectrom; 2007; 21(1):35-43. PubMed ID: 17133336. Abstract: A nano-scale solid-phase extraction (SPE) device was developed for the detection of gel-separated proteins in low abundance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with a simplified microfabrication technology. By using SU-8 photoresist instead of epoxy glue to connect the microchannel and transfer capillary, polymeric contaminant signals in MS analysis were significantly reduced. Micro SPE columns with different capacities and geometric characteristics were investigated in order to increase the detection sensitivity and decrease spot size for MALDI-TOF-MS analysis. It is shown that enhancements in sensitivities for the detection of proteins in low abundance were correlated with the reduction in column capacity and increase in column aspect ratio. Fifty nanoliters of matrix solution were sufficient to elute the sample completely from the optimized micro SPE column with 3.5 nL capacity. The mass spectrum of a 5 fmol in-gel tryptic digest of bovine serum albumin (BSA), processed by the micro SPE column, demonstrated that 29 peptides matched the protein giving a sequence coverage of 51%, which was better than that obtained from analysis of 25 fmol of the same sample prepared by the dried-droplet method. With the micro SPE column treatment of 2 microL of digestion supernatant of a gel spot of the IQGAP1 protein, 15 peptides were detected from the mass spectrum with the highest individual score of 111, while, with a ZipTip procedure, only nine peaks were detected with the highest individual score of 71. Analytical results demonstrated that this approach greatly improved the sequence coverage and identification specificity for the tested protein. It can serve as a very useful tool in proteomics studies, especially for low abundance proteins.[Abstract] [Full Text] [Related] [New Search]