These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Methane oxidation mechanism on Pt(111): a cluster model DFT study. Author: Psofogiannakis G, St-Amant A, Ternan M. Journal: J Phys Chem B; 2006 Dec 07; 110(48):24593-605. PubMed ID: 17134220. Abstract: The electronic energy barriers of surface reactions pertaining to the mechanism of the electrooxidation of methane on Pt (111) were estimated with density functional theory calculations on a 10-atom Pt cluster, using both the B3LYP and PW91 functionals. Optimizations of initial and transition states were performed for elementary steps that involve the conversion of CH(4) to adsorbed CO at the Pt/vacuum interface. As a first approximation we do not include electrolyte effects in our model. The reactions include the dissociative chemisorption of CH(4) on Pt, dehydrogenation reactions of adsorbed intermediates (*CH(x) --> *CH(x-1) + *H and *CH(x)O --> *CH(x-1)O + *H), and oxygenation reactions of adsorbed CH(x) species (*CH(x) + *OH --> *CH(x)OH). Many pathways were investigated and it was found that the main reaction pathway is CH(4) --> *CH(3) --> *CH(2) --> *CH --> *CHOH --> *CHO --> *CO. Frequency analysis and transition-state theory were employed to show that the methane chemisorption elementary step is rate-limiting in the above mechanism. This conclusion is in agreement with published experimental electrochemical studies of methane oxidation on platinum catalysts that have shown the absence of an organic adlayer at electrode potentials that allow the oxidation of adsorbed CO. The mechanism of the electrooxidation of methane on Pt is discussed.[Abstract] [Full Text] [Related] [New Search]