These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Functional definition of the tobacco protoporphyrinogen IX oxidase substrate-binding site.
    Author: Heinemann IU, Diekmann N, Masoumi A, Koch M, Messerschmidt A, Jahn M, Jahn D.
    Journal: Biochem J; 2007 Mar 15; 402(3):575-80. PubMed ID: 17134376.
    Abstract:
    PPO (protoporphyrinogen IX oxidase) catalyses the flavin-dependent six-electron oxidation of protogen (protoporphyrinogen IX) to form proto (protoporphyrin IX), a crucial step in haem and chlorophyll biosynthesis. The apparent K(m) value for wild-type tobacco PPO2 (mitochondrial PPO) was 1.17 muM, with a V(max) of 4.27 muM.min(-1).mg(-1) and a catalytic activity k(cat) of 6.0 s(-1). Amino acid residues that appear important for substrate binding in a crystal structure-based model of the substrate docked in the active site were interrogated by site-directed mutagenesis. PPO2 variant F392H did not reveal detectable enzyme activity indicating an important role of Phe(392) in substrate ring A stacking. Mutations of Leu(356), Leu(372) and Arg(98) increased k(cat) values up to 100-fold, indicating that the native residues are not essential for establishing an orientation of the substrate conductive to catalysis. Increased K(m) values of these PPO2 variants from 2- to 100-fold suggest that these residues are involved in, but not essential to, substrate binding via rings B and C. Moreover, one prominent structural constellation of human PPO causing the disease variegate porphyria (N67W/S374D) was successfully transferred into the tobacco PPO2 background. Therefore tobacco PPO2 represents a useful model system for the understanding of the structure-function relationship underlying detrimental human enzyme defects.
    [Abstract] [Full Text] [Related] [New Search]