These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Focal adhesion kinase mediates cell survival via NF-kappaB and ERK signaling pathways.
    Author: Huang D, Khoe M, Befekadu M, Chung S, Takata Y, Ilic D, Bryer-Ash M.
    Journal: Am J Physiol Cell Physiol; 2007 Apr; 292(4):C1339-52. PubMed ID: 17135301.
    Abstract:
    Focal adhesion kinase (FAK) is important to cellular functions such as proliferation, migration, and survival of anchorage-dependent cells. We investigated the role of FAK in modulating normal cellular responses, specifically cell survival in response to inflammatory stimuli and serum withdrawal, using FAK-knockout (FAK(-/-)) embryonic fibroblasts. FAK(-/-) fibroblasts were more vulnerable to TNF-alpha-induced apoptosis, as measured by terminal deoxynucleotidyl transferase positivity. FAK(-/-) fibroblasts also demonstrated increased procaspase-3 cleavage to p17 subunit, whereas this was undetectable in FAK(+/+) fibroblasts. Insulin receptor substrate-1 expression was completely abolished and NF-kappaB activity was reduced, with a concomitant decrease in abundance of the anti-apoptotic protein Bcl-x(L) in FAK(-/-) cells. Upon serum withdrawal, FAK(+/+) cells exhibited marked attenuation of basal ERK phosphorylation, while FAK(-/-) cells, in contrast, maintained high basal ERK phosphorylation. Moreover, inhibition of ERK phosphorylation potentiated serum withdrawal-induced caspase-3 activity. This was paralleled by increased insulin receptor substrate (IRS)-2 expression in FAK(-/-) cells, although both insulin- and IGF-1-mediated phosphorylation of Akt/PKB and GSK-3 were impaired. This suggests that IRS-2 protects against apoptosis upon serum withdrawal via the ERK signaling pathway. The specific role of FAK to protect cells from apoptosis is regulated by activation and phosphorylation of NF-kappaB and interaction between activated growth factor anti-apoptotic signaling pathways involving both phosphatidylinositol 3-kinase/Akt and MAPK/ERK1/2. We demonstrate that FAK is necessary for upregulation of the anti-apoptotic NF-kappaB response, as well as for normal expression of growth factor signaling proteins. Thus we propose a novel role for FAK in protection from cytokine-mediated apoptosis.
    [Abstract] [Full Text] [Related] [New Search]