These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photoinduced phospholipid polymer grafting on Parylene film: advanced lubrication and antibiofouling properties. Author: Goda T, Konno T, Takai M, Ishihara K. Journal: Colloids Surf B Biointerfaces; 2007 Jan 15; 54(1):67-73. PubMed ID: 17137760. Abstract: Poly(p-xylylene) (Parylene C) coatings have been applied in implantable electronic devices because of their electrical insulation and moisture barrier properties. To provide lubrication and an antibiofouling surface, a biomimetic phospholipid polymer--poly(2-methacryloyloxyethyl phosphorylcholine (MPC))--was grafted from the surface using UV irradiation with benzophenone as an initiator. The poly(MPC) grafting on the Parylene C films was confirmed by attenuated total reflection-Fourier transfer inflated irradiation, X-ray photoelectron spectroscopy and ellipsometry. These analyses indicated that the Parylene C films were completely covered by the poly(MPC)-graft layer with an average thickness of 140 nm under dry condition. The atomic force microscope (AFM) images revealed that the poly(MPC)-graft chains extended under wet condition. However, they formed globular structures under dry condition. Water contact angle measurements revealed a decreased receding angle of 29.5 degrees on the poly(MPC)-grafted surface with a high hysteresis of 41.4 degrees. These results indicate that the poly(MPC)-graft chains gain mobility in a wet environment. The average kinetic friction coefficient of the poly(MPC)-grafted surface in water was 0.018, which was 90% lower than that of the original surface. The in vitro single protein adsorption reduced by over 70% due to the poly(MPC) grafting. The hydrated poly(MPC)-graft chains are considered to provide lubrication and antibiofouling properties. The surface zeta potential measurement clarified the electroneutrality of the poly(MPC)-grafted surface. We concluded that the poly(MPC) grafting from the Parylene C layer significantly improved its surface properties and, subsequently, its biological properties.[Abstract] [Full Text] [Related] [New Search]