These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucose stimulates Ca2+ influx and insulin secretion in 2-week-old beta-cells lacking ATP-sensitive K+ channels.
    Author: Szollosi A, Nenquin M, Aguilar-Bryan L, Bryan J, Henquin JC.
    Journal: J Biol Chem; 2007 Jan 19; 282(3):1747-56. PubMed ID: 17138557.
    Abstract:
    In adult beta-cells glucose-induced insulin secretion involves two mechanisms (a) a K(ATP) channel-dependent Ca(2+) influx and rise of cytosolic [Ca(2+)](c) and (b) a K(ATP) channel-independent amplification of secretion without further increase of [Ca(2+)](c). Mice lacking the high affinity sulfonylurea receptor (Sur1KO), and thus K(ATP) channels, have been developed as a model of congenital hyperinsulinism. Here, we compared [Ca(2+)](c) and insulin secretion in overnight cultured islets from 2-week-old normal and Sur1KO mice. Control islets proved functionally mature: the magnitude and biphasic kinetics of [Ca(2+)](c) and insulin secretion changes induced by glucose, and operation of the amplifying pathway, were similar to adult islets. Sur1KO islets perifused with 1 mm glucose showed elevation of both basal [Ca(2+)](c) and insulin secretion. Stimulation with 15 mm glucose produced a transient drop of [Ca(2+)](c) followed by an overshoot and a sustained elevation, accompanied by a monophasic, 6-fold increase in insulin secretion. Glucose also increased insulin secretion when [Ca(2+)](c) was clamped by KCl. When Sur1KO islets were cultured in 5 instead of 10 mm glucose, [Ca(2+)](c) and insulin secretion were unexpectedly low in 1 mm glucose and increased following a biphasic time course upon stimulation by 15 mm glucose. This K(ATP) channel-independent first phase [Ca(2+)](c) rise was attributed to a Na(+)-, Cl(-)-, and Na(+)-pump-independent depolarization of beta-cells, leading to Ca(2+) influx through voltage-dependent calcium channels. Glucose indeed depolarized Sur1KO islets under these conditions. It is suggested that unidentified potassium channels are sensitive to glucose and subserve the acute and long-term metabolic control of [Ca(2+)](c) in beta-cells without functional K(ATP) channels.
    [Abstract] [Full Text] [Related] [New Search]