These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The electrogenic Na+/HCO3- cotransport modulates resting membrane potential and action potential duration in cat ventricular myocytes. Author: Villa-Abrille MC, Petroff MG, Aiello EA. Journal: J Physiol; 2007 Feb 01; 578(Pt 3):819-29. PubMed ID: 17138608. Abstract: Perforated whole-cell configuration of patch clamp was used to determine the contribution of the electrogenic Na+/HCO3- cotransport (NBC) on the shape of the action potential in cat ventricular myocytes. Switching from Hepes to HCO3- buffer at constant extracellular pH (pH(o)) hyperpolarized resting membrane potential (RMP) by 2.67 +/- 0.42 mV (n = 9, P < 0.05). The duration of action potential measured at 50% of repolarization time (APD50) was 35.8 +/- 6.8% shorter in the presence of HCO3- than in its absence (n = 9, P < 0.05). The anion blocker SITS prevented and reversed the HCO3- -induced hyperpolarization and shortening of APD. In addition, no HCO3- -induced hyperpolarization and APD shortening was observed in the absence of extracellular Na+. Quasi-steady-state currents were evoked by 8 s duration voltage-clamped ramps ranging from -130 to +30 mV. A novel component of SITS-sensitive current was observed in the presence of HCO3-. The HCO3- -sensitive current reversed at -87 +/- 5 mV (n = 7), a value close to the expected reversal potential of an electrogenic Na+/HCO3- cotransport with a HCO3-:Na+ stoichiometry ratio of 2: 1. The above results allow us to conclude that the cardiac electrogenic Na+/HCO3- cotransport has a relevant influence on RMP and APD of cat ventricular cells.[Abstract] [Full Text] [Related] [New Search]