These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular characterization of a new scorpion venom lipolysis activating peptide: Evidence for disulfide bridge-mediated functional switch of peptides. Author: Zhu S, Gao B. Journal: FEBS Lett; 2006 Dec 22; 580(30):6825-36. PubMed ID: 17141763. Abstract: Venoms from scorpions contain extremely rich bioactive peptides that often carry diverse functions and are presumably needed to achieve synergistic effects for rapidly immobilizing prey and defending themselves. BotLVP1 is a unique heterodimer protein recently found in the scorpion Buthus occitanus tunetanus venom that is structurally related to scorpion toxins affecting sodium channels (NaScTxs) but exhibits adipocyte lipolysis activity. We have isolated and identified two cDNA clones encoding subunits alpha and beta of a BotLVP1-like peptide (named BmLVP1) from the Chinese scorpion Buthus martensii venom gland and determined the first complete gene structure of this subfamily. These results highlight a genetic link between these lipolysis activating peptides and NaScTxs. Comparison of cDNA and genomic sequences combined with protein structural and functional analysis provides evidence supporting the existence of RNA editing mechanism in scorpion venom glands, which could mediate functional switch of BmLVP1 gene, from adipocyte lipolysis to neurotoxicity, by altering the wrapper disulfide bridge (WDB) pattern of the peptides.[Abstract] [Full Text] [Related] [New Search]