These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cytoplasmic domain of human myelin protein zero likely folded as beta-structure in compact myelin.
    Author: Luo X, Sharma D, Inouye H, Lee D, Avila RL, Salmona M, Kirschner DA.
    Journal: Biophys J; 2007 Mar 01; 92(5):1585-97. PubMed ID: 17142269.
    Abstract:
    Myelin protein zero (P0 or P0 glycoprotein), the major integral membrane protein in peripheral nervous system myelin, plays a key role in myelin membrane compaction and stability. While the structure of P0 extracellular domain was determined by crystallography, the paucity of any structural data on the highly positive-charged P0 cytoplasmic domain (P0-cyt) has greatly limited our understanding of the mechanism of P0 function. Here, using circular dichroism and intrinsic fluorescence spectroscopy, we attempted to elucidate the structure of human P0-cyt (hP0-cyt) in membrane mimetic environments composed of detergents or lipid vesicles. We found that the secondary structure of P0-cyt was polymorphic-at the lipid/protein ratio corresponding to that of mature peripheral myelin ( approximately 50:1), hP0-cyt mainly adopted a beta-conformation, whereas when the proportion of lipid increased, the structure underwent a beta-->alpha transition. By contrast, the secondary structure of the major isoform of myelin basic protein, another myelin protein with a very large positive charge, remained unchanged across a wide range of lipid/protein ratios. We propose that when hP0-cyt is bound at sufficient concentration to lamellar lipid bilayers such as myelin, it folds into a beta-conformation; before this threshold lipid/protein ratio is reached, the domain is alpha-helical. We suggest that the cytoplasmic apposition (major dense line) in compact myelin may be stabilized via the hydrogen-bonding of beta-strands formed as a result of local P0-P0 aggregation.
    [Abstract] [Full Text] [Related] [New Search]