These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sequence, identification and characterization of cDNAs encoding two different members of the 18 kDa heat shock family of Zea mays L. Author: Goping IS, Frappier JR, Walden DB, Atkinson BG. Journal: Plant Mol Biol; 1991 Apr; 16(4):699-711. PubMed ID: 1714322. Abstract: Heat-shocked maize seedlings (cv. Oh43) synthesize a characteristic set of heat-shock proteins (hsps) which include an 18 kDa family containing at least six major isoelectric variants. A cDNA library was constructed from poly(A)+ RNAs isolated from the radicles of heat-shocked maize seedlings and screened with a DNA fragment from the theoretical open reading frame of a putative Black Mexican Sweet maize hsp18 genomic clone. Two clones, cMHSP18-3 and cMHSP18-9, were isolated, and the RNA transcripts generated from them were translated into proteins which immunoreact with antibodies directed against the maize 18 kDa hsps and exhibit the same electrophoretic characteristics as two different members of the 18 kDa hsp family. Nucleotide sequence analyses of the cDNAs in these clones reveal that their 5' and 3' untranslated regions exhibit 33-34% identity and that their protein encoding regions share 93% identity. The deduced amino acid sequences of these clones show 90% identity, and the apparent molecular masses and isoelectric points of these proteins agree with those established for two different 18 kDa hsps, numbered 3 and 6. This report substantiates that at least two of the 18 kDa hsps in maize are products of different but related genes. Moreover, it establishes that transcripts for these proteins accumulate during heat shock and that both their nucleotide and deduced amino acid sequences share extensive similarities with the class VI small hsps in soybean and with transcripts expressed during meiosis in Lilium.[Abstract] [Full Text] [Related] [New Search]