These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ligand design for heterobimetallic single-chain magnets: synthesis, crystal structures, and magnetic properties of MIICuII (M=Mn, Co) chains with sterically hindered methyl-substituted phenyloxamate bridging ligands. Author: Pardo E, Ruiz-García R, Lloret F, Faus J, Julve M, Journaux Y, Novak MA, Delgado FS, Ruiz-Pérez C. Journal: Chemistry; 2007; 13(7):2054-66. PubMed ID: 17146827. Abstract: Two new series of neutral oxamato-bridged heterobimetallic chains of general formula [MCu(L(x))(2)] m DMSO (m=0-4) (L(1)=N-2-methylphenyloxamate, M=Mn (1 a) and Co (1 b); L(2)=N-2,6-dimethylphenyloxamate, M=Mn (2 a) and Co (2 b); L(3)=N-2,4,6-trimethylphenyloxamate, M=Mn (3 a) and Co (3 b)) have been prepared by reaction between the corresponding anionic oxamatocopper(II) complexes [Cu(Lx)2](2-) with Mn(2+) or Co(2+) cations in DMSO. The crystal structures of [CoCu(L2)2(H2O)2] (2 b') and [CoCu(L3)2(H2O)2]4 H2O (3 b') have been solved by single-crystal X-ray diffraction methods. Compounds 2 b' and 3 b' adopt zigzag and linear chain structures, respectively. The intrachain Cu...Co distance through the oxamate bridge is 5.296(1) A in 2 b' and 5.301(2) A in 3 b', while the shortest interchain Co...Co distance is 5.995(5) A in 2 b' and 8.702(3) A in 3 b', that is, the chains are well isolated in the crystal lattice due to the presence of the bulky methyl-substituted phenyl groups. Although both Mn(II)Cu(II) and Co(II)Cu(II) chains exhibit ferrimagnetic behaviour with moderately strong intrachain antiferromagnetic coupling (-J(Mn,Cu)=24.7-27.9 cm(-1) and -J(Co,Cu)=35.0-45.8 cm(-1); H= Sigma -J(M,Cu)S(M,i)S(Cu,i)), only the Co(II)Cu(II) chains show slow magnetic relaxation at low temperatures (T(B)<3.5 K), which is characteristic of single-chain magnets (SCMs) because of the high magnetic anisotropy of the Co(II) ion. The blocking temperatures T(B) along this series of chains vary according to the steric hindrance of the aromatic substituent of the oxamate ligand in the series L(1)<L(2)<L(3). Analysis of the SCM behaviour for 3 b and 3 b' on the basis of Glauber's theory for a one-dimensional Ising system showed a thermally activated mechanism for the magnetic relaxation (Arrhenius law dependence). The activation energies E(a) to reverse the magnetisation direction are 38.0 (3 b) and 16.3 cm(-1) (3 b'), while the preexponential factors tau(0) are 2.3x10(-11) (3 b) and 4.0x10(-9) s (3 b').[Abstract] [Full Text] [Related] [New Search]